Thursday, May 30, 2019
Artificial Life :: essays research papers fc
Artificial sustenance (commonly called a-life) is the term applied collectively to attempts being made to take mathematical models and data processor simulations of the ways in which living organisms develop, grow, and evolve. Researchers in this burgeoning field hope to gain deeper insights into the nature of organic life as well as into the further possibilities of COMPUTER science and robotics (see ROBOT). A-life techniques are also being used to explore the origins and chemical processes of metabolism. Some investigators have even proposed that some digital "life" in computers might already be considered a real life form.BackgroundThe term artificial life was coined in the 1980s by Christopher Langdon, a computer scientist at Los Alamos National Laboratory and the Santa Fe Institute. Langdon organized the first experimental workshop on the subject at Santa Fe in 1987. Since then opposite a-life conferences have taken place, drawing increasingly wider attention and a growing number of participants.Theoretical studies of a-life, however, had been in progress long before the 1980s. Most notably, the Hungarian-born U.S. mathematician John VON NEUMANN, star of the pioneers of computer science, had begun to explore the nature of very basic a-life formats called cellular automata (see AUTOMATA, THEORY OF) in the 1950s. Cellular automata are imaginary mathematical "cells"-analogous to checkerboard squares-that can be made to simulate physical processes by subjecting them to certain simple rules called algorithms (see ALGORITHM). Before his death, von Neumann had developed a set of algorithms by which a cellular automaton-a cuff shape with a very long tail-could "reproduce" itself.Another important predecessor of a-life research was Dutch biologist Aristid Lindenmeyer. Interested in the mathematics of plant growth, Lindenmeyer build in the 1960s that through the use of a few basic algorithms-now called Lindenmeyer systems, or L-system s-he could model biochemical processes as well as tracing the maturement of complex biological forms such as flowers. Computer-graphics programs now make use of L-systems to yield realistic three-dimensional images of plants.The significance of Lindenmeyers contribution is evident in the situation that so-called "genetic algorithms" are now basic to research into a-life as well as many other areas of interest. Genetic algorithms, first described by computer scientist John Holland of the University of Michigan in the 1970s, are comparable to L-systems. A computer worker trying to answer some question about a-life sets up a system-an algorithm-by which the computer itself rapidly grades the multiple possible answers that it has produced to the question.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.